To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)

Online Trigonometry Help and Tutoring

Trigonometry is the part of mathematics based on the ratios of the length of the sides of a right angled triangle. There are six basic trigonometric functions - sine, cosine, tangent, cotangent, secant and cosecant. The application of trigonometry varies from aerospace engineering to astronomy to oceanography and many more. To have a good concept of this subject, one has to start from understanding the basics instead of mugging up the formulae.

Online trigonometry help is a great solution to brush up this topic methodically. It’s important to learn the formulas well, the better you know the basic identities, the easier it will be to recognize the problem and solve them. Moreover, students can get unlimited trigonometry homework help at any given time by staying at home. Experienced virtual tutors are available 24/7 and provide useful help and make learning the topic easier and convenient. The Tutors covers all the basic trigonometric concepts as well as difficult word problems. In order to score well in mathematics, one needs to learn and understand the basics and have a thorough knowledge of trigonometry.

Some positive aspects of our online learning program:

  • Online session designed by TutorVista covers all basic concepts including trigonometry formulas, and consequently, it helps students in understanding other relevant topics.
  • Students get help from experienced tutors while solving difficult questions.
  • Solve trigonometry problems with expert virtual tutors at a student's convenient time.
  • TutorVista provides personalized, one-on-one tutoring sessions for all grades.

Related Calculators
Calculator for Trigonometry Right Angle Trigonometry Calculator
Right Triangle Trigonometry Calculator Trigonometry Function Calculator

Trigonometry Help for all Grades

Back to Top

Trigonometry is all about the relation of triangles. It is a part of Mathematics which gives basic to advanced level concepts. TutorVista provides online learning help for all grades. Its online sessions are personalized, complete and understandable which helps students manage their daily lessons. Students of higher grades can also schedule online sessions with TutorVista and make their learning methods effective and easy at all times. Moreover, college trigonometry help is also offered by TutorVista.

Chat With Us

By Grades
Grade 12 Grade 11 Grade 10 Grade 9 Grade 8
Grade 7 Grade 6 Grade 5 Grade 4 Grade 3

Trigonometry Help Topics

Back to Top

All essential trigonometry topics are requisitely covered by the TutorVista online learning  sessions. Some sub-topics are mentioned below and students are requested to study them to get better understanding about the topic.

Apart from these topics, there are other trigonometric topics that students need to understand  thoroughly. Get trigonometry help and experience the comfort of learning different topics in a virtual environment. However, TutorVista has designed trigonometry tutoring sessions for each Grade.

With this learning process, students can work with a virtual tutor and solve each problem instantly. These online sessions are effective, informative and most importantly, give student’s better understanding about every concept. The interactive whiteboard makes each session active and useful just like any classroom session. In brief, learning is fun and interesting with TutorVista sessions. Visit the site and take free demo sessions today and experience a unique way of learning and preparing for exams. Solve your homework by choosing well-organized TutorVista online sessions and get confidence to perform well in exams.

Trigonometry Problems

Back to Top

With trigonometry we can find the height of a building or the width of a river without actually  climbing or crossing it. Certain basic definitions and formulas are to be remembered for the best of understanding and to have a right approach towards the subject. Mathematics is not just about learning formulas it’s a way of thinking and solving many problems to develop your skills. We considered six possible combinations between the ratios of two sides of a triangle to solve various problems which are sine, cosine and tangent. These three functions are simply ratios of the sides of triangles that help us relate to an angle in the triangle.

In this subject we usually use the Greek letters.

i) $\alpha$ (Alpha)

ii) $\beta$ (Beta)

$\theta$ (Theta)

$\gamma$ (Gamma)

v) $\phi$ (Phi)

vi) $\lambda$ (Lambda)

and so on to indicate the measure of an angle.

Trigonometry Help

Let us call $\angle$ A as $\theta$.

The side opposite to $\theta$ is BC.

The side adjacent to $\theta$ is AB.

The hypotenuse of the $\triangle$ABC is AC.

Now, let us write down the trigonometrical ratios with the help of the above triangles:

1) $Sine \ \theta$ : It is defined as the ratio of the side opposite to $\theta$ and the hypotenuse.

i.e.  $Sine \ \theta$ = $\frac{Opposite \ side}{Hypotenuse}$ = $\frac{BC}{AC}$

In short we write $sin \ \theta$ = $\frac{BC}{AC}$

2) $Cosine \ \theta$ : It is defined as the ratio of an adjacent side to $\theta$ and the hypotenuse.

i.e. $Cosine \ \theta$ = $\frac{Adjacent \ side}{Hypotenuse}$ = $\frac{AB}{AC}$ 

In short,  $cos \ \theta$ = $\frac{AB}{AC}$

3) $Tangent \ \theta$: It is defined as the ratio of the side opposite to $\theta$ and the adjacent side.

$Tangent \ \theta$ = $\frac{Opposite \ side}{Adjacent \ side}$ = $\frac{BC}{AB}$ 

In short,  $tan \ \theta$ = $\frac{BC}{AB}$

Similarly three more ratios can be obtained by taking the reciprocals of $sin \ \theta$, $cos \ \theta$ and $tan \ \theta$.

 $Cosec \ \theta$ is the reciprocal of $sin \ \theta$.

It is written as $Cosec \ \theta$,

$\therefore$ $cosec \ \theta$ = $\frac{1}{sin \ \theta}$

5) $Sec \ \theta$ is the reciprocal of $cos \ \theta$.

It is written as $sec \ \theta$,

$\therefore$ $sec \ \theta$ = $\frac{1}{cos \ \theta}$

 $Cot \ \theta$ is the reciprocal of $tan \ \theta$.

It is written as $cot \ \theta$,

$\therefore$ $cot \ \theta$ = $\frac{1}{tan \ \theta}$

(i) Sin $\theta$ refers to a particular ratio. It is not sin multiplied by q.

(ii) For all trigonometrical ratios, T-ratios will be used as short form.

(iii) In right angled triangles the T-ratios are obtained only for acute angles.

(iv) T-ratios depend on only the magnitude of the angles and not on the size of the triangle.

Use the below widget to calculate trigonometric identities.

More topics in Trigonometry
Trigonometry Questions Napiers Analogy
Trigonometry Formulas Trigonometric Ratios
Sine and Cosine Applications of Trigonometry
De Moivre's Theorem Polar Form of Complex Numbers
Trigonometric Form of Complex Numbers Circular Functions
Law of Cosines Sine Rule
Law of Sines Trigonometric Functions
Inverse Trigonometric Functions Trigonometric Graphs
Hyperbolic Functions Trigonometric Tables
Periodic Function Projection Formula
Trigonometric Equations Trigonometry Word Problems
Trigonometry Homework Help Law of Tangents
Cofunction Identities Complex Numbers
Powers of Trig Functions Hyperbolic Trigonometry
Multiple Angles Cofunction Identity
Trigonometry Identities Sum and Difference Identities
Trigonometry Examples
Related Topics
Math Help Online Online Math Tutor
*AP and SAT are registered trademarks of the College Board.