Eighth grade Math help is good for those students, who need more time to understand Math topics. This learning process gives personalized attention to students along with detailed explanation of each concept. Most importantly, students can take these one-on-one learning sessions at any time by staying at home. To get these educational sessions, they do not need to go any place and attend the class. The only thing they need to do is scheduling sessions with tutors. Some essential topics are added in class 8 Math syllabus and to cover these topics, students can take as many sessions as they need. TutorVista is a well-known name among students as it provides worthwhile learning sessions to students of different grades.

Tutoring programs designed for grade 8 students cover different Math topics including algebra, number system, mensuration, data handling and others. Moreover, students can choose homework help and assessment help from TutorVista.Online learning programs are well-designed and most importantly, students get one-on-one sessions on any topic. Vast subject coverage is one of the advantages of this learning method. Apart from this, students can download Math worksheets and practice these repeatedly to get more convenient with each topic. However, by following this way, they can revise each chapter in a systematic manner. Integers, algebraic expressions, fractions and decimals are some important topics, which students need to practice rigorously before their exams. Virtual whiteboard and chat option are two online tools that make each learning session active as well as effective for students.

**Number and Operations**

- Factors, multiples, integer amounts and square roots for numbers and applications for the above related concepts in problem solving.
- Understanding of the relative magnitude of numbers by ordering or comparing rational numbers, common irrational numbers, numbers with whole number or fractional bases,exponents, square roots, absolute values, integers, or numbers represented in scientific notation using number lines or equality and inequality.
- Understanding of properties of number (odd, even, positive, negative, remainders, divisibility, and prime factorization) and field properties as apply to subsets of the real numbers.

**Geometry and Measurement**

- Applies the Pythagorean Theorem.
- Demonstrates conceptual understanding of surface area or volume by solving problems involving surface area and volume of rectangular prisms, triangular prisms, cylinders, pyramids, or cones.
- Sketch, identify, sort, classify, construct, measure, and apply a variety of geometric shapes and figures and problems.
- Create and solve a variety of geometric problems and be able to solve more complex problems with measurement estimations an problems using a variety of formulas.

**Functions and Algebra**

- Extend, analyze and justify the explanations for patterns and their rules and a more complex level and substitute natural numbers for variables when solving algebraic equations.
- Understanding of linear relationships as a constant rate of change and distinguishes between linear and nonlinear relationships.
- Be able to write algebraic expressions and write statements to understand simple formulas and simplify algebraic equations with the four operations.

- Make inferences, predictions and evaluations based on interpretations of data collection results.
- Analyze the data to formulate or justify conclusions, to make predictions (circle graphs, linear relationship).
- Simple or composite experiments, independent events, dependent events.
- Describe collected data in terms of mean, median and the mode and be able to analyze any bias.
- Predicts and determines event in which the sample space may or may not contain equally likely outcomes.

Given, y = $\sqrt{9x}$ + 2x

Put x = 9

=> y = $\sqrt{9 * 9}$ + 2 * 9

=> y = $\sqrt{9^2}$ + 18

=> y = 9 + 18

Number = 72

Prime factors of 72

72 = 2 * 2 * 2 * 3 * 3

Convert mixed fractions into improper fractions

$2\frac{3}{5}$ = $\frac{13}{5}$

and $1\frac{3}{5}$ = $\frac{8}{5}$

=> $\frac{13}{5}$ - $\frac{8}{5}$ = $\frac{13 - 8}{5}$

= $\frac{5}{5}$

= 1

=> $2\frac{3}{5}$ - $1\frac{3}{5}$ = 1

Let the numbers be x and y

The sum of numbers = 13

=> x + y = 13 ...............(1)

and

2x - 3y = 1 .................(2)

Step 2:

(1) => y = 13 - x

Step 3:

Put y = 13 - x in equation (2)

=> 2x - 3(13 - x) = 1

=> 2x - 39 + 3x = 1

=> 5x = 40

=> x = 8

Step 4:

Put x = 8 in equation(1)

=> 8 + y = 13

=> y = 13 - 8 = 5

Hence numbers are 8 and 5.